Models
The primary means of defining objects in pydantic is via models
(models are simply classes which inherit from BaseModel
).
You can think of models as similar to types in strictly typed languages or the requirements of a single endpoint in an API.
Untrusted data can be passed to a model, after parsing and validation pydantic guarantees that the fields of the resultant model instance will conform to the field types defined on the model.
Note
pydantic is primarily a parsing library, not a validation library. Validation is a means to an end - building a model which conforms to the types and constraints provided.
In other words pydantic guarantees the types and constraints of the output model, not the input data.
This might sound like an esoteric distinction, but it is not - you should read about Data Conversion if you're unsure what this means or how it might effect your usage.
Basic model usage🔗
from pydantic import BaseModel class User(BaseModel): id: int name = 'Jane Doe'
User
here is a model with two fields id
which is an integer and is required,
and name
which is a string and is not required (it has a default value). The type of name
is inferred from the
default value, thus a type annotation is not required (however note this warning about field
order when some fields do not have type annotations).
user = User(id='123')
user
here is an instance of User
. Initialisation of the object will perform all parsing and validation,
if no ValidationError
is raised, you know the resulting model instance is valid.
assert user.id == 123
fields of a model can be accessed as normal attributes of the user object the string '123' has been cast to an int as per the field type
assert user.name == 'Jane Doe'
name wasn't set when user was initialised, so it has the default value
assert user.__fields_set__ == {'id'}
the fields which were supplied when user was initialised:
assert user.dict() == dict(user) == {'id': 123, 'name': 'Jane Doe'}
either .dict()
or dict(user)
will provide a dict of fields, but .dict()
can take numerous other arguments.
user.id = 321 assert user.id == 321
This model is mutable so field values can be changed.
Model properties🔗
The example above only shows the tip of the iceberg of what models can do. Models contains the following methods and attributes:
dict()
- returns a dictionary of the model's fields and values, see exporting models for more details
json()
- returns a JSON string representation
dict()
, see exporting models for more details copy()
- returns a deep copy of the model, see exporting models for more details
parse_obj()
- utility for loading any object into a model with error handling if the object is not a dictionary, see helper function below
parse_raw()
- utility for loading strings of numerous formats, see helper function below
parse_file()
- like
parse_raw()
but for files, see helper function below from_orm()
- for loading data from arbitrary classes, see ORM mode below
schema()
- returns a dictionary representing the model as JSON Schema, see Schema
schema_json()
- returns a JSON string representation
schema()
, see Schema fields
- a dictionary of the model class's fields
__config__
- the configuration class for this model, see model config
__fields_set__
- Set of names of fields which were set when the model instance was initialised
Recursive Models🔗
More complex hierarchical data structures can be defined using models as types in annotations themselves.
from typing import List from pydantic import BaseModel class Foo(BaseModel): count: int size: float = None class Bar(BaseModel): apple = 'x' banana = 'y' class Spam(BaseModel): foo: Foo bars: List[Bar] m = Spam(foo={'count': 4}, bars=[{'apple': 'x1'}, {'apple': 'x2'}]) print(m) #> Spam foo=<Foo count=4 size=None> #> bars=[<Bar apple='x1' banana='y'>, <Bar apple='x2' banana='y'>] print(m.dict()) #> { #> 'foo': {'count': 4, 'size': None}, #> 'bars': [ #> {'apple': 'x1', 'banana': 'y'}, #> {'apple': 'x2', 'banana': 'y'} #> ] #> }
(This script is complete, it should run "as is")
For self-referencing models, see postponed annotations.
ORM Mode (aka Arbitrary Class Instances)🔗
Pydantic models can be created from arbitrary class instances to support models that map to ORM objects.
To do this:
1. The Config property orm_mode
must be set to True
.
2. The special constructor from_orm
must be used to create the model instance.
The example here uses SQLAlchemy but the same approach should work for any ORM.
from typing import List from sqlalchemy import Column, Integer, String from sqlalchemy.dialects.postgresql import ARRAY from sqlalchemy.ext.declarative import declarative_base from pydantic import BaseModel, constr Base = declarative_base() class CompanyOrm(Base): __tablename__ = 'companies' id = Column(Integer, primary_key=True, nullable=False) public_key = Column(String(20), index=True, nullable=False, unique=True) name = Column(String(63), unique=True) domains = Column(ARRAY(String(255))) class CompanyModel(BaseModel): id: int public_key: constr(max_length=20) name: constr(max_length=63) domains: List[constr(max_length=255)] class Config: orm_mode = True co_orm = CompanyOrm( id=123, public_key='foobar', name='Testing', domains=['example.com', 'foobar.com'] ) print(co_orm) #> <__main__.CompanyOrm object at 0x7ff4bf918278> co_model = CompanyModel.from_orm(co_orm) print(co_model) #> CompanyModel id=123 #> public_key='foobar' #> name='Testing' #> domains=['example.com', 'foobar.com']
(This script is complete, it should run "as is")
ORM instances will be parsed with from_orm
recursively as well as at the top level.
Here a vanilla class is used to demonstrate the principle, but any ORM could be used instead.
from typing import List from pydantic import BaseModel class PetCls: def __init__(self, *, name: str, species: str): self.name = name self.species = species class PersonCls: def __init__(self, *, name: str, age: float = None, pets: List[PetCls]): self.name = name self.age = age self.pets = pets class Pet(BaseModel): name: str species: str class Config: orm_mode = True class Person(BaseModel): name: str age: float = None pets: List[Pet] class Config: orm_mode = True bones = PetCls(name='Bones', species='dog') orion = PetCls(name='Orion', species='cat') anna = PersonCls(name='Anna', age=20, pets=[bones, orion]) anna_model = Person.from_orm(anna) print(anna_model) #> Person name='Anna' #> pets=[ #> <Pet name='Bones' species='dog'>, #> <Pet name='Orion' species='cat'> #> ] #> age=20.0
(This script is complete, it should run "as is")
Arbitrary classes are processed by pydantic using the GetterDict
class
(see utils.py) which attempts to
provide a dictionary-like interface to any class. You can customise how this works by setting your own
sub-class of GetterDict
in Config.getter_dict
(see config).
You can also customise class validation using root_validators with pre=True
,
in this case your validator function will be passed a GetterDict
instance which you may copy and modify.
Error Handling🔗
pydantic will raise ValidationError
whenever it finds an error in the data it's validating.
Note
Validation code should not raise ValidationError
itself, but rather raise ValueError
, TypeError
or
AssertionError
(or subclasses of ValueError
or TypeError
) which will be caught and used to populate
ValidationError
.
One exception will be raised regardless of the number of errors found, that ValidationError
will
contain information about all the errors and how they happened.
You can access these errors in a several ways:
e.errors()
- method will return list of errors found in the input data.
e.json()
- method will return a JSON representation of
errors
. str(e)
- method will return a human readable representation of the errors.
Each error object contains:
loc
- the error's location as a list, the first item in the list will be the field where the error occurred, subsequent items will represent the field where the error occurred in sub models when they're used.
type
- a unique identifier of the error readable by a computer.
msg
- a human readable explanation of the error.
ctx
- an optional object which contains values required to render the error message.
To demonstrate that:
from typing import List from pydantic import BaseModel, ValidationError, conint class Location(BaseModel): lat = 0.1 lng = 10.1 class Model(BaseModel): is_required: float gt_int: conint(gt=42) list_of_ints: List[int] = None a_float: float = None recursive_model: Location = None data = dict( list_of_ints=['1', 2, 'bad'], a_float='not a float', recursive_model={'lat': 4.2, 'lng': 'New York'}, gt_int=21, ) try: Model(**data) except ValidationError as e: print(e) """ 5 validation errors list_of_ints -> 2 value is not a valid integer (type=type_error.integer) a_float value is not a valid float (type=type_error.float) is_required field required (type=value_error.missing) recursive_model -> lng value is not a valid float (type=type_error.float) gt_int ensure this value is greater than 42 (type=value_error.number.gt; limit_value=42) """ try: Model(**data) except ValidationError as e: print(e.json()) """ [ { "loc": ["is_required"], "msg": "field required", "type": "value_error.missing" }, { "loc": ["gt_int"], "msg": "ensure this value is greater than 42", "type": "value_error.number.gt", "ctx": { "limit_value": 42 } }, { "loc": ["list_of_ints", 2], "msg": "value is not a valid integer", "type": "type_error.integer" }, { "loc": ["a_float"], "msg": "value is not a valid float", "type": "type_error.float" }, { "loc": ["recursive_model", "lng"], "msg": "value is not a valid float", "type": "type_error.float" } ] """
(This script is complete, it should run "as is". json()
has indent=2
set by default, but I've tweaked the
JSON here and below to make it slightly more concise.)
Custom Errors🔗
In your custom data types or validators you should use ValueError
, TypeError
or AssertionError
to raise errors.
See validators for more details on use of the @validator
decorator.
from pydantic import BaseModel, ValidationError, validator class Model(BaseModel): foo: str @validator('foo') def name_must_contain_space(cls, v): if v != 'bar': raise ValueError('value must be "bar"') return v try: Model(foo='ber') except ValidationError as e: print(e.errors()) """ [ { 'loc': ('foo',), 'msg': 'value must be "bar"', 'type': 'value_error', }, ] """
(This script is complete, it should run "as is")
You can also define your own error class with abilities to specify custom error code, message template and context:
from pydantic import BaseModel, PydanticValueError, ValidationError, validator class NotABarError(PydanticValueError): code = 'not_a_bar' msg_template = 'value is not "bar", got "{wrong_value}"' class Model(BaseModel): foo: str @validator('foo') def name_must_contain_space(cls, v): if v != 'bar': raise NotABarError(wrong_value=v) return v try: Model(foo='ber') except ValidationError as e: print(e.json()) """ [ { "loc": ["foo"], "msg": "value is not \"bar\", got \"ber\"", "type": "value_error.not_a_bar", "ctx": { "wrong_value": "ber" } } ] """
(This script is complete, it should run "as is")
Helper Functions🔗
Pydantic provides three classmethod
helper functions on models for parsing data:
parse_obj
this is almost identical to the__init__
method of the model except if the object passed is not a dictValidationError
will be raised (rather than python raising aTypeError
).parse_raw
takes a str or bytes parses it as json, or pickle data and then passes the result toparse_obj
. The data type is inferred from thecontent_type
argument, otherwise json is assumed.parse_file
reads a file and passes the contents toparse_raw
, ifcontent_type
is omitted it is inferred from the file's extension.
import pickle from datetime import datetime from pydantic import BaseModel, ValidationError class User(BaseModel): id: int name = 'John Doe' signup_ts: datetime = None m = User.parse_obj({'id': 123, 'name': 'James'}) print(m) # > User id=123 name='James' signup_ts=None try: User.parse_obj(['not', 'a', 'dict']) except ValidationError as e: print(e) # > error validating input # > User expected dict not list (error_type=TypeError) m = User.parse_raw('{"id": 123, "name": "James"}') # assumes json as no content type passed print(m) # > User id=123 name='James' signup_ts=None pickle_data = pickle.dumps({'id': 123, 'name': 'James', 'signup_ts': datetime(2017, 7, 14)}) m = User.parse_raw(pickle_data, content_type='application/pickle', allow_pickle=True) print(m) # > User id=123 name='James' signup_ts=datetime.datetime(2017, 7, 14, 0, 0)
(This script is complete, it should run "as is")
Note
Since pickle
allows complex objects to be encoded, to use it you need to explicitly pass allow_pickle
to
the parsing function.
Generic Models🔗
Note
New in version v0.29.
This feature requires Python 3.7+.
Pydantic supports the creation of generic models to make it easier to reuse a common model structure.
In order to declare a generic model, you perform the following steps:
- Declare one or more
typing.TypeVar
instances to use to parameterize your model. - Declare a pydantic model that inherits from
pydantic.generics.GenericModel
andtyping.Generic
, where you pass theTypeVar
instances as parameters totyping.Generic
. - Use the
TypeVar
instances as annotations where you will want to replace them with other types or pydantic models.
Here is an example using GenericModel
to create an easily-reused HTTP response payload wrapper:
from typing import Generic, TypeVar, Optional, List from pydantic import BaseModel, validator, ValidationError from pydantic.generics import GenericModel DataT = TypeVar('DataT') class Error(BaseModel): code: int message: str class DataModel(BaseModel): numbers: List[int] people: List[str] class Response(GenericModel, Generic[DataT]): data: Optional[DataT] error: Optional[Error] @validator('error', always=True) def check_consistency(cls, v, values): if v is not None and values['data'] is not None: raise ValueError('must not provide both data and error') if v is None and values.get('data') is None: raise ValueError('must provide data or error') return v data = DataModel(numbers=[1, 2, 3], people=[]) error = Error(code=404, message='Not found') print(Response[int](data=1)) # > Response[int] data=1 error=None print(Response[str](data='value')) # > Response[str] data='value' error=None print(Response[str](data='value').dict()) # > {'data': 'value', 'error': None} print(Response[DataModel](data=data).dict()) # > {'data': {'numbers': [1, 2, 3], 'people': []}, 'error': None} print(Response[DataModel](error=error).dict()) # > {'data': None, 'error': {'code': 404, 'message': 'Not found'}} try: Response[int](data='value') except ValidationError as e: print(e) """ 4 validation errors data value is not a valid integer (type=type_error.integer) data value is not none (type=type_error.none.allowed) error value is not a valid dict (type=type_error.dict) error must provide data or error (type=value_error) """
(This script is complete, it should run "as is")
If you set Config
or make use of validator
in your generic model definition, it is applied
to concrete subclasses in the same way as when inheriting from BaseModel
. Any methods defined on
your generic class will also be inherited.
Pydantic's generics also integrate properly with mypy, so you get all the type checking
you would expect mypy to provide if you were to declare the type without using GenericModel
.
Note
Internally, pydantic uses create_model
to generate a (cached) concrete BaseModel
at runtime,
so there is essentially zero overhead introduced by making use of GenericModel
.
If the name of the concrete subclasses is important, you can also override the default behavior:
from typing import Generic, TypeVar, Type, Any, Tuple from pydantic.generics import GenericModel DataT = TypeVar('DataT') class Response(GenericModel, Generic[DataT]): data: DataT @classmethod def __concrete_name__(cls: Type[Any], params: Tuple[Type[Any], ...]) -> str: return f'{params[0].__name__.title()}Response' print(Response[int](data=1)) # IntResponse data=1 print(Response[str](data='a')) # StrResponse data='a'
(This script is complete, it should run "as is")
Dynamic model creation🔗
There are some occasions where the shape of a model is not known until runtime, for this pydantic provides
the create_model
method to allow models to be created on the fly.
from pydantic import BaseModel, create_model DynamicFoobarModel = create_model('DynamicFoobarModel', foo=(str, ...), bar=123) class StaticFoobarModel(BaseModel): foo: str bar: int = 123
Here StaticFoobarModel
and DynamicFoobarModel
are identical.
Fields are defined by either a a tuple of the form (<type>, <default value>)
or just a default value. The
special key word arguments __config__
and __base__
can be used to customise the new model. This includes
extending a base model with extra fields.
from pydantic import BaseModel, create_model class FooModel(BaseModel): foo: str bar: int = 123 BarModel = create_model('BarModel', apple='russet', banana='yellow', __base__=FooModel) print(BarModel) # > <class 'pydantic.main.BarModel'> print(', '.join(BarModel.__fields__.keys())) # > foo, bar, apple, banana
Custom Root Types🔗
Pydantic models which do not represent a dict
("object" in JSON parlance) can have a custom
root type defined via the __root__
field. The root type can of any type: list, float, int etc.
The root type can be defined via the type hint on the __root__
field.
The root value can be passed to model __init__
via the __root__
keyword argument or as
the first and only argument to parse_obj
.
from typing import List import json from pydantic import BaseModel from pydantic.schema import schema class Pets(BaseModel): __root__: List[str] print(Pets(__root__=['dog', 'cat'])) # > Pets __root__=['dog', 'cat'] print(Pets(__root__=['dog', 'cat']).json()) # ["dog", "cat"] print(Pets.parse_obj(['dog', 'cat'])) # > Pets __root__=['dog', 'cat'] print(Pets.schema()) # > {'title': 'Pets', 'type': 'array', 'items': {'type': 'string'}} pets_schema = schema([Pets]) print(json.dumps(pets_schema, indent=2)) """ { "definitions": { "Pets": { "title": "Pets", "type": "array", "items": { "type": "string" } } } } """
Faux Immutability🔗
Models can be configured to be immutable via allow_mutation = False
this will prevent changing attributes of
a model. See model config for more details on Config
.
Warning
Immutability in python is never strict. If developers are determined/stupid they can always modify a so-called "immutable" object.
from pydantic import BaseModel class FooBarModel(BaseModel): a: str b: dict class Config: allow_mutation = False foobar = FooBarModel(a='hello', b={'apple': 'pear'}) try: foobar.a = 'different' except TypeError as e: print(e) # > "FooBarModel" is immutable and does not support item assignment print(foobar.a) # > hello print(foobar.b) # > {'apple': 'pear'} foobar.b['apple'] = 'grape' print(foobar.b) # > {'apple': 'grape'}
Trying to change a
caused an error and it remains unchanged, however the dict b
is mutable and the
immutability of foobar
doesn't stop b
from being changed.
Abstract Base Classes🔗
Pydantic models can be used alongside Python's Abstract Base Classes (ABCs).
import abc from pydantic import BaseModel class FooBarModel(BaseModel, abc.ABC): a: str b: int @abc.abstractmethod def my_abstract_method(self): pass
(This script is complete, it should run "as is")
Field Ordering🔗
Field order is important in models for the following reason:
- validation is performed in the order fields are defined; fields validators can access the values of earlier fields, but not later ones
- field order is preserved in the model schema
- field order is preserved in validation errors
- field order is preserved by
.dict()
and.json()
etc.
As of v1.0 all fields with annotations (both annotation only and annotations with a value) come first followed by fields with no annotation. Within each group fields remain in the order they were defined.
from pydantic import BaseModel, ValidationError class Model(BaseModel): a: int b = 2 c: int = 1 d = 0 e: float print(Model.__fields__.keys()) #> dict_keys(['a', 'c', 'e', 'b', 'd']) m = Model(e=2, a=1) print(m.dict()) #> {'a': 1, 'c': 'x', 'e': 2.0, 'b': 2, 'd': 'y'} try: Model(a='x', b='x', c='x', d='x', e='x') except ValidationError as e: error_logs = [e['loc'] for e in e.errors()] print(error_logs) #> [('a',), ('c',), ('e',), ('b',), ('d',)]
(This script is complete, it should run "as is")
Warning
Note here that field order when both annotated and un-annotated fields are used is esoteric and not obvious at first glance.
In general therefore, it's preferable to add type annotations to all fields even when a default value also defines the type.
Required fields🔗
In addition to annotation only fields to denote required fields, an ellipsis (...
) can be used as the value
from pydantic import BaseModel class Model(BaseModel): a: int b: int = ...
Here both a
and b
are required here. Use of ellipses for required fields does not work well with mypy
so should generally be avoided.
Data Conversion🔗
pydantic may cast input data to force it to conform model field types. This may result in information being lost, take the following example:
from pydantic import BaseModel class Model(BaseModel): a: int b: float c: str print(Model(a=3.1415, b=' 2.72 ', c=123).dict()) #> {'a': 3, 'b': 2.72, 'c': '123'}
(This script is complete, it should run "as is")
This is a deliberate decision of pydantic, and in general it's the most useful approach, see here for a longer discussion of the subject.